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ABSTRACT Aztreonam-avibactam was tested against 1,839 Stenotrophomonas malto-
philia isolates collected worldwide and demonstrated potent activity against isolates
from all geographic regions and infection types (overall MIC50/90, 4/4 mg/liter; 97.8% in-
hibited at �8 mg/liter). Trimethoprim-sulfamethoxazole (TMP-SMX) (MIC50/90, �0.5/1 mg/
liter; 95.4% susceptible) and minocycline (MIC50/90, 0.5/2 mg/liter; 99.5% susceptible)
were also very active. Aztreonam-avibactam inhibited 84.7% of non-TMP-SMX-
susceptible isolates at �8 mg/liter. Aztreonam-avibactam may represent a valuable
option for the treatment of S. maltophilia infections, addressing a major unmet med-
ical need.
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The occurrence of Stenotrophomonas maltophilia infections has increased continu-
ously in recent years, becoming a major cause of hospital-acquired pneumonia

(HAP) and bloodstream infections (BSI) and an increasingly frequent colonizer of the
lungs of cystic fibrosis patients (1–3). Moreover, the selection of an appropriate
antimicrobial regimen for the treatment of S. maltophilia infections is complicated by
the high level of intrinsic resistance and uncertainties related to breakpoint criteria for
susceptibility testing (2, 4). Thus, S. maltophilia is recognized by the World Health
Organization as one of the leading multidrug-resistant organisms in hospital settings
for which disease prevention and treatment strategies must be developed (5).

S. maltophilia displays decreased susceptibility to many antimicrobial agents, in-
cluding agents used empirically to treat pneumonia and bloodstream infections, the
two most common types of S. maltophilia infections. Low membrane permeability,
chromosomally encoded multidrug resistance efflux pumps, and the production of two
inducible �-lactamases (L1 and L2) contribute to the intrinsic resistance of S. maltophilia
to most �-lactam agents currently available for clinical use (6, 7). L1 is a class B3
metallo-�-lactamase (MBL) that hydrolyzes carbapenems and other �-lactams but not
the monobactam aztreonam. L1 is resistant to all clinically available �-lactamase
inhibitors. L2 is a class A cephalosporinase that confers resistance to broad-spectrum
cephalosporins and aztreonam but is inhibited by commercially available serine-�-
lactamase inhibitors, such as tazobactam and avibactam (8). Results of steady-state
kinetics and electrospray ionization mass spectrometry experiments have demon-
strated that avibactam competitively and reversibly inhibits L2, and the carbamylation
rates (k2/K) for L2 are comparable to those results published for the avibactam
inactivation of KPC-2 (9). The most recent Food and Drug Administration (FDA)-
approved �-lactam–�-lactamase inhibitor combinations—such as ceftazidime-
avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, and imipenem-relebac-
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tam—are potent inhibitors of class A carbapenemases but are ineffective against L1
MBL produced by S. maltophilia (10). Therefore, it is crucial to develop new agents to
treat S. maltophilia infections.

Aztreonam-avibactam is a drug combination currently undergoing clinical trials to
assess its efficacy in treating infections caused by Gram-negative organisms, including
those organisms producing MBLs. Aztreonam, the only clinically available monobactam,
is a �-lactam antibiotic that was approved for treatment of Gram-negative infections by
the U.S. FDA in 1986. Aztreonam is stable to hydrolysis by MBLs, a feature unique
among �-lactams; however, it is hydrolyzed by most clinically relevant serine
�-lactamases (11). Avibactam is a non-�-lactam �-lactamase inhibitor that inhibits
Ambler class A (including L2 produced by S. maltophilia), class C, and some class D
enzymes (12). Thus, the aztreonam-avibactam combination has demonstrated activity
against Gram-negative bacteria producing most clinically relevant �-lactamases, includ-
ing MBLs (13), and is being developed to treat serious infections caused by MBL-
producing Gram-negative bacteria (ClinicalTrials registration no. NCT03580044). In this
study, we evaluated the in vitro activity of 1,839 clinical S. maltophilia isolates collected
worldwide from 2016 to 2019.

A total of 1,839 S. maltophilia isolates were collected from 145 medical centers
located in Western Europe (W-EU; n � 388; 24 centers in 9 nations [Belgium, France,
Germany, Ireland, Italy, Portugal, Spain, Sweden, and the United Kingdom]), Eastern
Europe and Mediterranean region (E-EU; n � 156; 15 centers in 12 nations [Belarus,
Croatia, Czech Republic, Greece, Hungary, Israel, Poland, Romania, Russia, Slovakia,
Slovenia, and Turkey]), North America (NA; n � 1,095; 75 centers in the United States
and 2 in Canada), Latin America (LATAM; n � 92; 12 centers in 9 nations [Argentina,
Brazil, Chile, Costa Rica, Ecuador, Mexico, Panama, Peru, and Venezuela]), and the
Asia-Pacific region (APAC; n � 108; 17 centers in 8 nations [Australia, Japan, Malaysia,
New Zealand, Philippines, Singapore, South Korea, and Taiwan]) as part of the SENTRY
Antimicrobial Surveillance Program. All bacterial species were consecutively collected
by infection type. Only isolates determined to be significant by local criteria as the
reported probable cause of infection were included in the program. The criteria used
to categorize a bacterial isolate as “clinically significant” were not defined in the study
protocol, but they were based on local algorithms, which may vary among participating
medical centers. Species identification was confirmed by using standard biochemical
tests and/or a MALDI Biotyper (Bruker Daltonics, Billerica, MA, USA) when necessary.

Isolates were tested against aztreonam-avibactam and �25 comparator agents by
the broth microdilution method, according to CLSI guidelines (14). All tests were
conducted in a central monitoring laboratory (JMI Laboratories, North Liberty, IA, USA).
Aztreonam-avibactam was tested with avibactam at a fixed concentration of 4 mg/liter
based on the pharmacokinetic/pharmacodynamic (PK/PD) characteristics of avibactam,
the known spectrum of �-lactamase inhibition by avibactam, and the fact that avibac-
tam alone has no antibacterial activity at a clinically relevant concentration (15, 16).

A cutoff of �8 mg/liter, which indicates the aztreonam susceptible breakpoint
published by CLSI for Pseudomonas aeruginosa and the aztreonam-avibactam tentative
PK/PD susceptible breakpoint, was applied to aztreonam-avibactam for comparison
purposes (17–19). CLSI breakpoints were applied for the following comparator agents:
trimethoprim-sulfamethoxazole (TMP-SMX; susceptible at �2 mg/liter and resistant at
�4 mg/liter), minocycline (susceptible at �4 mg/liter and resistant at �16 mg/liter),
levofloxacin (susceptible at �2 mg/liter and resistant at �8 mg/liter), and ceftazidime
(susceptible at �8 mg/liter and resistant at �32 mg/liter) (17). The only published
EUCAST breakpoints are for TMP-SMX (susceptible at �0.001 mg/liter and resistant at
�4 mg/liter) (20). Colistin breakpoints published by the CLSI for P. aeruginosa (suscep-
tible at �2 mg/liter) and tigecycline breakpoints published by the U.S. FDA for Entero-
bacterales (susceptible at �2 mg/liter) were applied for comparison purposes (17, 21).
Concurrent quality control (QC) testing was performed to ensure proper test conditions
and procedures.

These isolates mostly came from patients with pneumonia (70.4%) and BSI (12.6%).
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Other infection sites included skin and soft tissue (9.3%), intra-abdominal sites (3.3%),
the urinary tract (2.4%), and other locations (2.1%).

Aztreonam-avibactam was very active against isolates from all geographic regions
and infection types, with overall MIC50/90 values of 4/4 mg/liter and 97.8% of isolates
inhibited at �8 mg/liter (Table 1). Aztreonam-avibactam activity was consistent across
regions, with the highest percentage of isolates inhibited at �8 mg/liter observed in
LATAM (100.0%), followed by E-EU (98.7%), NA (98.1%), W-EU (96.6%), and APAC
(96.3%) (Table 2). Moreover, aztreonam-avibactam inhibited 97.6% of isolates from
pneumonia and 99.1% of isolates from BSI at �8 mg/liter (data not shown) and retained
good activity against non-TMP-SMX-susceptible isolates, inhibiting 84.7% at �8 mg/
liter (Table 2).

TMP-SMX (MIC50/90, �0.5/1 mg/liter) and minocycline (MIC50/90, 0.5/2 mg/liter) also
were active against S. maltophilia. The percentage of isolates inhibited at the TMP-SMX
susceptible breakpoint (�2 mg/liter; CLSI) ranged from 93.5% in E-EU to 96.9% in W-EU.
The percentage of isolates inhibited at the minocycline susceptible breakpoint (�4 mg/
liter; CLSI) was 99.0% in APAC and 100.0% in W-EU, E-EU, and LATAM (Tables 1 and 2).
Furthermore, minocycline retained activity against 92.4% of non-TMP-SMX-susceptible
isolates (Table 2).

The fluoroquinolones levofloxacin (MIC50/90, 1/�4 mg/liter) and moxifloxacin
(MIC50/90, 0.5/4 mg/liter) exhibited moderate in vitro activity against S. maltophilia.
Levofloxacin inhibited 78.0% of isolates at the current CLSI susceptible breakpoint for
S. maltophilia (�2 mg/liter) but only 58.8% at �1 mg/liter, which is the current levo-
floxacin breakpoint for P. aeruginosa according to the CLSI (17). Levofloxacin suscep-
tibility rates were higher in LATAM (88.0%), APAC (87.0%), and W-EU (84.3%) than in
E-EU (78.8%) and NA (74.0%) (Table 2). Moxifloxacin was approximately 2-fold less

TABLE 1 MIC distributions of aztreonam-avibactam and comparator agents tested against Stenotrophomonas maltophilia isolates
collected worldwide (2016 –2019)

Antimicrobial agent

No. of isolates (cumulative %) inhibited at a MIC (mg/liter) of:
MIC
(mg/liter)

0.06 0.12 0.25 0.5 1 2 4 8 16 32 >a 50% 90%

Aztreonam-avibactam 0 (0.0) 1 (0.1) 3 (0.2) 12 (0.9) 132 (8.0) 766 (49.7) 780 (92.1) 105 (97.8) 16 (98.7) 24 (100.0) 4 4
Ceftazidime 0 (0.0) 1 (0.1) 0 (0.1) 0 (0.1) 26 (1.4) 113 (7.6) 115 (13.8) 131 (20.9) 148 (29.0) 240 (42.0) 1,066 (100.0) �32 �32
Colistin 8 (0.4) 77 (4.6) 194 (15.2) 164 (24.1) 159 (32.7) 160 (41.4) 257 (55.4) 287 (71.0) 533 (100.0) 4 �8
Levofloxacin 0 (0.0) 1 (0.1) 45 (2.5) 326 (20.2) 709 (58.8) 354 (78.0) 173 (87.4) 231 (100.0) 1 �4
Moxifloxacin 736 (42.9) 404 (66.5) 238 (80.3) 132 (88.0) 94 (93.5) 111 (100.0) 0.5 4
Minocycline 0 (0.0) 1 (1.0) 11 (11.7) 65 (74.8) 15 (89.3) 5 (94.2) 5 (99.0) 1 (100.0) 0.5 2
Tigecycline 1 (0.1) 5 (0.3) 94 (5.4) 464 (30.7) 633 (65.1) 366 (85.0) 179 (94.8) 85 (99.4) 11 (100.0) 1 2
TMP-SMXb 1,646 (89.7) 60 (92.9) 45 (95.4) 29 (96.9) 56 (100.0) �0.5 1
aGreater than the highest dilution tested.
bTMP-SMX, trimethoprim-sulfamethoxazole.

TABLE 2 Aztreonam-avibactam and comparator agents tested against clinical isolates of S. maltophilia collected worldwide and stratified
by geographic region (2016 –2019)

Region or characteristica

(no. of isolates)

% of isolates susceptibleb to:

ATM-AVI TMP-SMX Minocycline Levofloxacin Ceftazidime Tigecycline Colistin

All (1,839) 97.8 95.4 99.5 78.0 20.9 85.0 41.4
W-EU (388) 96.6 96.9 100.0 84.3 17.3 88.9 42.8
E-EU (156) 98.7 93.5 100.0 78.8 16.7 84.0 42.9
NA (1,095) 98.1 95.0 99.2 74.0 22.0 83.0 41.6
LATAM (92) 100.0 96.7 100.0 88.0 30.4 88.0 29.3
APAC (108) 96.3 95.3 99.0 87.0 21.3 90.7 42.6
TMP-SMX-NS (85) 84.7 0.0 92.4 30.6 14.1 66.7 40.0
aW-EU, Western Europe; E-EU, Eastern Europe; NA, North America; LATAM, Latin America; APAC, Asia-Pacific region; TMP-SMX-NS, isolates not susceptible to
trimethoprim-sulfamethoxazole (17).

bFor TMP-SMX, minocycline, levofloxacin, and ceftazidime, the percentage of isolates susceptible by CLSI criteria is shown. For aztreonam-avibactam (ATM-AVI), the
percentage inhibited at �8 mg/liter is shown for purposes of comparison (18). For tigecycline, the percentage inhibited at �2 mg/liter, the U.S. FDA susceptible
breakpoint for Enterobacterales, is shown (21). For colistin, the percentage inhibited at �2 mg/liter, the CLSI susceptible breakpoint for P. aeruginosa, is shown (17) for
comparison.
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active than levofloxacin and inhibited 80.3% of isolates at �1 mg/liter, but inhibited
only 42.9% at �0.25 mg/liter, which is the current EUCAST breakpoint for Enterobac-
terales (66.5% inhibited at �0.5 mg/liter) (Table 1) (20). Ciprofloxacin (MIC50/90,
2/�4 mg/liter) was the least active of the fluoroquinolones tested; it inhibited only 2.8%
of isolates at �0.5 mg/liter, which is the current CLSI breakpoint for P. aeruginosa (data
not shown).

Evaluation of the in vitro activity of tigecycline depends greatly on the cutoff
applied. Overall, 85.0% of isolates were inhibited at �2 mg/liter, which is the suscep-
tible breakpoint published by the U.S. FDA for Enterobacterales (21). However, only
30.7% of isolates were inhibited at �0.5 mg/liter, which is the breakpoint currently
published by EUCAST for Escherichia coli and Citrobacter koseri (Table 1) (20). Ceftazi-
dime (MIC50/90, �32/�32 mg/liter; 20.9% susceptible at �8 mg/liter) (17) and colistin
(MIC50/90, 4/�8 mg/liter; 41.4% inhibited at �2 mg/liter) showed limited activity against
S. maltophilia (Tables 1 and 2). Other compounds that demonstrated limited activity
were ceftazidime-avibactam (MIC50/90, 32/�32 mg/liter) and ceftolozane-tazobactam
(MIC50/90, �16/�16 mg/liter).

The main limitation of this study is that other new compounds that may be active
against S. maltophilia, such as eravacycline and cefiderocol, could not be included as
comparators.

The selection of proper antibiotic treatment for S. maltophilia infections poses a
challenge due to the lack of controlled clinical trials evaluating treatment regimens.
Current treatment recommendations are based on historical evidence, cases series, case
reports, and in vitro susceptibility test studies (22, 23). TMP-SMX is considered the
first-line agent for S. maltophilia infections due to historically high susceptibility rates
and large clinical experience. However, adverse effects, such as nephrotoxicity and
hyperkalemia, allergic reactions, intolerance, and resistance, can limit its usage. Fluo-
roquinolones also may be used, but there is limited information on their effectiveness
(24–26). Minocycline has emerged as a potential treatment for S. maltophilia infection
due to high susceptibility rates, excellent penetration into the lungs, high oral bioavail-
ability, and a favorable safety profile; however, clinical data are scarce (27). In summary,
the availability of drugs with in vitro activity against this organism that have demon-
strated clinical efficacy is very limited; therefore, new treatment options are clearly
needed.

We evaluated the in vitro activity of a large collection of contemporary clinical
isolates of S. maltophilia. Our results indicated that aztreonam-avibactam, TMP-SMX,
and minocycline are the most active compounds against this organism. It should be
noted that PK/PD and clinical studies evaluating S. maltophilia infections are very
limited and that currently available breakpoint criteria for susceptibility testing are
dated and were mostly based only on in vitro susceptibility testing results (MIC
distributions) and/or on PK/PD data generated with other nonfermentative Gram-
negative species more frequently isolated in the clinical setting (28).

Based on the tentative PK/PD susceptible breakpoint for aztreonam-avibactam,
which agrees with the current aztreonam susceptible breakpoint published by the CLSI
for P. aeruginosa (�8 mg/liter), aztreonam-avibactam was active against 97.8% of
isolates. This percentage is slightly higher than the percentage of isolates susceptible
to TMP-SMX (95.4%) and slightly lower than the percentage of isolates susceptible to
minocycline (99.5%) based on current CLSI criteria for these agents (17). Notably, if one
applied a breakpoint 1 doubling dilution lower, these three agents would still remain
active against �90% of isolates (Table 1). Levofloxacin and moxifloxacin were the most
active of the fluoroquinolones, but both agents exhibited low susceptibility rates when
the breakpoints currently published by the CLSI and EUCAST for P. aeruginosa and
Enterobacterales were applied (17, 20). It is important, however, that the treatment cost
be carefully weighed when other agents are also active against S. maltophilia.

In summary, aztreonam-avibactam demonstrated potent in vitro activity against a
large worldwide collection of contemporary S. maltophilia isolates collected from
patients with pneumonia, bloodstream infections, and other systemic infections. The
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results of this investigation indicate that aztreonam-avibactam may represent a valu-
able option for the treatment of S. maltophilia infections, addressing a major unmet
medical need. These findings support the clinical development of aztreonam-
avibactam to treat infections caused by this organism.
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